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Abstract. Current–voltage characteristics are reported for a Tl2Ba2CaCu2O8 thin film with a
granular structure. Our data provide support for a Berezinskii–Kosterlitz–Thouless transition
type with an unusual vortex–antivortex interactionA(T ) ∼ (Tco −T )2. Dissipation is discussed
in terms of large-scale pair excitations through the sample inhomogeneities. Consistency is
found with the theory worked out by Lobb, Abraham and Tinkham to explain resistive transition
data in arrays of superconducting junctions arranged two-dimensionally. On this basis, the
temperature behaviour ofA(T ) accounts for a weakening of the pair potential at interfaces due
to the short coherence length of high-Tc oxides, as was pointed out by Deutscher and Müller.
We investigate the spatial renormalization of the vortex–antivortex interaction over the length
scale probed by the current in the same manner as was first demonstrated by Kadin, Epstein and
Goldman. Then good agreement with the renormalized Kosterlitz–Thouless theory is found.

1. Introduction

Voltage–current (V –I ) characteristics of high-Tc superconductors in a zero magnetic field
have been reported extensively to exhibit a power-law behaviourV ∼ I a with an exponent
a > 3 depending on the temperature, below a characteristic temperature above which a
non-zero ohmic resistance is observed [1–10]. Usually, the origin of this non-ohmic regime
has been interpreted as resulting from the quasi-two-dimensional (2D) superconducting-
like behaviour of the cuprate superconductors. In this approach, the dissipation has
been explained on the basis of the Berezinskii–Kosterlitz–Thouless (BKT) [11, 12] phase
transition theory [13] of non-binding vortex pair excitations within the superconducting
CuO2 layers. In this way, similarly to layered spin systems with planar rotator symmetry
[14], oxide cuprate superconductors appear as 2DX–Y -like systems except in a narrow
region near the BKT critical temperatureTBKT , which reflects the finite anisotropy of the
material [3, 5–8, 15]. Another possible approach, which should be more appropriate for a
description of the resistive transition in granular thin films, refers to the theory worked out
by Lobb, Abraham and Tinkham (LAT) [16] to explain resistive transition data in arrays of
superconducting junctions arranged two-dimensionally many years ago.

In both approaches as proposed above, two types of 2D vortex–antivortex pair
excitation are considered, respectively. One concerns the phase fluctuations within the
individual superconducting CuO2 layers in which the space scale is determined by the in-
plane coherence lengthξ‖, and the other is large-scale phase fluctuations through sample
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inhomogeneities. Here, one can wonder whether it is possible to make a distinction between
these two types of vortex–antivortex pair excitation or not from the experiment. As will be
shown below, the latter are essential to explain the electrical properties in some granular
thin films in high-Tc materials in which the grain sizes is much greater than the in-plane
coherence length, namelys � ξ‖. In both these cases, vortices and antivortices show the
same logarithmic interactionU(r) = 2πκ0kBT ln(r/r0) + 2µc, where 2µc is the energy
required to create a pair at the smallest separation possibler0 which is determined by either
ξ‖ or s. The stiffness constantπκ0 affecting the vortex interaction constantA = 2πκ0kBT

depends on the nature of vortices and usually varies as a function of the temperature,
vanishing at the mean-field temperatureTco. In 2D arrays of superconductor–insulator–
superconductor (SIS) tunnel junctions and in high-Tc materials, the vortex interaction will
have nearTco an anomalous temperature dependenceA(T ) ∼ (Tco − T )2 [17]. This
results from the fact that SIS junctions show, similarly to the so-called proximity effect for
superconductor–normal–superconductor (SNS) tunnel junctions [18], a strongly depressed
order parameter at the interface, nearTco because high-Tc oxides have extremely short
coherence lengths [19, 20]. Consequently, one expects for both SIS and SNS tunnel
junction arrays the same temperature dependence forA, namelyA(T ) ∼ (Tco − T )2. Note
that this temperature behaviour cannot account for 2D vortex pair excitations within the
superconducting CuO2 layers. This is because the in-plane vortex–antivortex interaction is
predicted, in the zero Josephson interlayer coupling limit, to be proportional to the sheet
density of Cooper pairs:n∗

2D = n∗
3Dd ∼ (Tco − T ), whered is the efective thickness of

superconducting layers [21–23]. Nevertheless, irrespective of any temperature dependence
for A, the renormalization of the vortex interaction yields a theoretical universal scaling
behaviour for the BKT phase transition whose experimental investigation is, in principle, a
way of probing the vortex interaction. In particular, taking into account the finite current
effects on the BKT behaviour, Kadin, Epstein and Goldman (KEG) [24] have shown that the
current dependence of the curvature ofV –I curves, nearTBKT , is a direct measure of the
partially renormalized stiffness constantκ`I

(T ) over characteristic distancesξI = r0(Ic/I )

with the corresponding dimensionless quantity`I = ln(ξI /r0) for which the characteristic
currentIc is proportional to the vortex interaction constantA.

The present paper reports the electrical transport properties of ac-axis-oriented
Tl2Ba2CaCu2O8 (Tl-2212) thin film with granular structure. The data are analysed within
the framework of the LAT model [16]. From isothermalI–V curves we have been able
to investigate the spatial renormalization of the vortex–antivortex interaction. Section 2
is concerned with the experimental method. The experimental results are presented in
section 3; in particular, an unusual method is proposed to determine the vortex interaction
constant. In section 4, we discuss the current-dependent curvature ofI–V characteristics
on the basis of the renormalized Kosterlitz–Thouless phase transition theory.

2. Experimental method

The Tl-2212 thin film with a thickness of 500 nm was deposited on an oriented LaAlO3(100)
substrate from a multitarget sputtering process as was described elsewhere [25]. The
annealing process was performed according to the method used for the synthesis in sealed
quartz tube [26]. Before starting the annealing cycle, the film was wrapped in a gold foil
in the presence of a Tl-2212 pellet in order to introduce a thallium oxide pressure [27] and
placed with a crucible containing a mixture of Tl2O3 and BaO2 in a quartz tube which was
sealed after pumping in air to 10−2 mbar. The tube was heated at a rate of 8.5 ◦C min−1 up
to 870◦C for 10 min, and afterwards the furnace was cooled to room temperature. Owing
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Figure 1. Derivative of R with respect toT versusT . The broken line is a guide for the
eyes and the solid curve displays an attempt to fit equation (6) to the data. The two antiparallel
arrows give an estimate for the broadening of the resistive transition. The inset showsR versus
T . The straight line exhibits a linear fit to the high-temperature data.

to the mixed Tl2O3 and BaO2, an oxygen partial pressure of about 10 mbar was expected
during the dwell time. Using this annealing process, high-quality films were obtained as
was proved by transmission electron miscroscopy [26]. The electron diffraction patterns
exhibited sharp reflections; the cell parameters and the space group were typical of a 2212-
type structure. Moreover, the corresponding bright-field images showed good periodicity
of the layer stacking along thec axis in agreement with the sharp reflections. Scanning
electron micrographs revealed homogeneous crystallization.

Two bridges with corresponding four-point measurement contact pads, were patterned.
Their width W and lengthL were 70µm and 210µm, respectively. IsothermalV –I

characteristics were obtained using a DC four-probe method with a voltage resolution of
5 nV, and a stability in the temperature of better than 5 mK. Figure 1 shows dR/ dT as a
function ofT . Note thatR denotes here the ohmic zero-field resistance. This figure clearly
displays a sharp superconducting resistive transition aboutT ∼ 106.55 K. An estimate of
the width of the transition is obtained from the width, measured at half-maximum, of the
dR/ dT peak. In this way, we find1T ≈ 1.6 K. Moreover, the resistance as a function of
the temperature does not exhibit any ‘shoulder’ or other anomalies as shown in the inset
of the figure. Such electrical characteristics are convincing arguments in favour of the high
quality of the Tl-2212 film used in this investigation.

3. Results

Figure 2 shows typical isothermalV –I characteristics obtained for our Tl-2212 thin film. A
rough power-law behaviourV ∼ I a(T ) [28] with a temperature-dependent exponenta > 3
is found in the range of lower temperatures, as shown in the inset of the figure above. At
higher temperatures, a linear behaviour (ohmic regime) is observed in the lower current
density limit. The current crossoverIcr between ohmic and non-ohmic regimes is found to
decrease rapidly with increasing temperature. We think that the behaviour observed is quite
similar to that expected in a BKT transition type. Moreover, we intend to show that the
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Figure 2. Logarithmic plot ofV versusI . From the right to the left the data were obtained at the
following temperatures: 105.50 K, 105.050 K, 105.100 K, 105.175 K, 105.225 K, 105.275 K,
105.325 K, 105.375 K, 105.425 K, 105.475 K, 105.525 K and 105.575 K. The broken line is
a guide for the eye, its slope is equal to 3. The inset shows the temperature dependence of the
exponenta(T ) in V ∝ I a(T ). It is to be noted thata(T ) is determined over the range of lower
current densities asT lies within the range of higher temperatures.

ohmic regime observed in the low current density limit is due to thermal dissociation atTBKT

of large-scale vortex–antivortex fluctuations through the sample inhomogeneities assumed
to be arranged two-dimensionally in our thin film. Following this hypothesis the ohmic–
non-ohmic crossover, which corresponds to a balance between the thermal effects and the
finite current effects, can be described in terms of competition between two characteristic
distances. One distanceξI = s(Ic/I ) is imposed by current effects and the other corresponds
to the separationξ+ between thermal free vortex excitations. The latter is given on the
basis of the BKT theory byξ+ = s exp[(b/τ ′)1/2] where b is a non-universal constant
of order unity andτ ′ a reduced temperature given byτ ′ = T ′/TBKT − 1, T ′ being an
effective temperature defined byT ′ = T A(TBKT )/A(T ). In this way, the current crossover
is expressible byξIcr = ξ+, namely

Icr = Ic(T ) exp[−(b/τ ′)1/2] (1)

whereIc(T ) ∝ A(T ); henceIc(T ) ∼ (Tco − T )2 as discussed above.
On the other hand, LAT have calculated the finite sheet resistance of a junction array

arising because dissociated vortices–antivortices are moved by the current and dissipate. It
is found thatR� = nvs

2rn [16] wherenv andrn are the free vortex density and the normal-
state resistance, respectively, of one of the junctions. AboveTBKT , as long as thermal
effects dominate,nv ∼ ξ−2

+ , so that the ohmic sheet resistance takes the form

R� = crn exp[−2(b/τ ′)1/2] (2)

with c a dimensionless constant of order unity. For an experimental investigation of
equations (1) and (2) nearTBKT , knowledge ofTco is essentially required. Different ways
are possible to determineTco; in particular, two methods are well known. One consists of an
attempt to fit paraconductivity theories [29, 30] to high-temperature resistive data, and the
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Figure 3. Square root ofIcr /
√

R versusT . Icr denotes the measured current crossover between
ohmic and non-ohmic regimes andR the ohmic resistance. The solid line displays a regression
which supportsIc ∼ (Tco − T )2 as shown in the text.

other is an extrapolation of the low-temperature dependence of the exponenta(T ) to higher
temperatures as long as the Ginzburg–Landau approximation is valid. However, in the
case of granular materials, the former is not the most appropriate method. This is because
knowledge of the intergrain barrier contribution is necessary for a quantitative description
of the excess conductivity which is localized only in the superconducting grains [31]. Here,
we propose an unusual way to findTco which appears to be consistent with the latter as will
be shown hereafter. Combining equations (1) and (2), it is easy to show that the ratio of
Icr to

√
R� is proportional toIc so that a measure ofIcr/

√
R� is an additional method for

determining bothTco andIc(T ). Note that equations (1) and (2) are valid only in the limit
of weakτ ′ so that one expectsIcr/

√
R� ∝ Ic to be verified only in any temperature range

close toTBKT . We represent in figure 3 the square root ofIcr/
√

R as a function of the
temperature. Here,Icr coincides, within the experimental errors, with the threshold current
for which the ratio ofV/I to R departs from unity, and

√
R equals the square root of the

ohmic resistance. The solid straight line in figure 3 represents the best regression of the
temperature dependenceIc(T ) ∼ (Tco −T )2, as predicted above. Moreover, the broken line
is an extrapolation of low-temperature data to higher temperatures, giving the value ofTco.

Figure 4 shows lnR against 1/
√

τ ′. According toA(T ) ∼ (Tco − T )2, the effective
temperatureT ′ = T (Tco − TBKT )2/(Tco − T )2 has been introduced to calculate the reduced
temperatureτ ′, as was defined above, andTBKT is determined in the usual way from
a(TBKT ) = 3 as shown in the inset of figure 2. The straight line in figure 4 represents a
least-squares fit of the theoretical equation (2) to the data. BothRn = L/Wcrn (L/W being
the corrective geometrical factor) andb act as adjustable fitting parameters. The optimum
values areb ≈ 5.88 andRn ≈ 239 m�. It is to be noted that the former is close to the
theoretical valueb ≈ 5.14 found for a squareX–Y model [12]. Now, let us return to
figure 3 which supportsIc(T ) = Ico(1− T/Tco)

2. The intersection of the straight line with
the axis of the ordinates gives(Ico/

√
Rn)

1/2 = 4.92 in SI units. Then, takingRn = 0.239
and substituting in the preceding expression, we find thatIco ≈ 11.83 Å.
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Figure 4. Semilogarithmic plot ofR versus 1/
√

τ ′. τ ′ is an effective reduced temperature as
shown in the text. The solid line represents an attempt to fit equation (2) to the data.

4. Discussion

A noticeable fact is that the pertinent characteristic current in an array of tunnel junctions is
the critical currentic of a single junction. Here, we shall assume a homogeneous granular
thin film. Then, asi is the current through one junction,I andi are related byI/W = i/s.
Therefore, it can be inferred thatic(T ) = ico(1 − T/Tco)

2. On the other hand,ico is found
from the LAT [16] theory which predicts the numerical value

ic(TBKT )/TBKT ≈ 30 nA K−1 (3)

and henceico ≈ 117 mA. Another pertinent parameter is the voltage introduced from the
product ofrn and ico, i.e. V0 = rnico. In the case of conventional tunnel junctions,V0 links
up with the energy gap 21. For both SIS and SNS tunnel junctions, it is usually expected
that eV0/21 ≈ 1 wheree is the elementary electrical charge. For instance, the well known
Ambegaokar–Baratoff [32] expression leads toeV0/21 = π/4 for the former type, so that
within the weak-coupling BCS limit it is found thateV0 = 2.75kBTco. Here, under these
conditions we find that the dimensionless constantc in equation (2) is approximately equal
to unity, in good agreement with the predictions as discussed above.

We shall now concern ourselves with a quantitative evaluation of the consistency of
the data with the LAT [16] theory. Both below and aboveTBKT , there are temperature-
dependent length scales which characterize the renormalized interaction for a single vortex–
antivortex pair excitation at separationr due to the presence of a background of polarizable
vortex pairs with smaller separations. AboveTBKT , the characteristic length isξ+ as
was shown before. BelowTBKT , the pertinent lengthξ− is associated with the average
separation between bound excitations.ξ− is given on the basis of the BKT theory by
ξ− = s exp(1/(2π))(b/|τ ′|)1/2] [12, 13]. Note that previous expressions forξ± are valid only
close toTBKT . Bothξ+ andξ− diverge atTBKT so that the BKT fixed pointπκ∞(TBKT ) = 2
is not experimentally observable because of finite size effects. In order to observe the fully
renormalized transition, it is necessary that the inequalities(ξ−, ξ+) < ξI < W be verified
where W denotes the greater length accessible in the experiment. Using the equation
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W/s = Ico/ico with numerical values as determined above, we find thats ≈ 7000Å, which
accounts for a realistic effective grain size in our granular thin film. By doing this we
really obtainξ± andξI . In figure 5 we have plotted ln(ξ±/s) and ln(ξI /s) as functions of
the temperature.ξ+ andξ− are represented by the two dotted curves, respectively, and the
typical distances probed by the current in our experiment are shown by the solid curves. The
horizontal chain line representsW . AboveTBKT , figure 5 clearly shows that the condition
ξ+ < ξI holds only within the range of weak currents forT > 105.375 K. Likewise, below
TBKT we have difficulty in achievingξ− < ξI . Thus, in our experiment, becauseξI is
the shortest characteristic length over almost the entire region of interest, the measured
quantities are partially renormalized. This means that the magnitudes of external current
determine the length scale over which the renormalized interaction is probed. Therefore, it
is dependent on eitherξI or `I ≡ ln(ξI /s) = ln(Ic/I ).

Figure 5. Natural logarithms ofξ−, ξ+ andξI (in units of s with s ∼ 7000Å) versusT . The
dotted lines showξ− and ξ+ which diverge atTBKT . The horizontal chain line accounts for
finite size effects. Both the solid and the broken curves display length scales associated with
current; from the right to the leftI = 10 µA, 20 µA, 40 µA, 60 µA, 100 µA, 200 µA and
400 µA. The solid curves exhibit typical length scales over which the interaction is probed by
the current in the experiment.

The density of free vortices can be expressed in terms of the pair excitation probability
y(`) by nv ≈ s−2 exp(−2`)y(`) where` is a convenient dimensionless quantity defined as
` ≡ ln(r/s); henceV/I ∝ exp(−2`I )y(`I ) within the regimes for which the conditions
ξI � (ξ−, ξ+) < W hold [24]. Following KEG,V/I ∝ exp(−2`I )y(`I ) together with the
Kosterlitz scaling equation dy/d`I = (2 − πκ`I

)y(`I ) give [24]

d[ln(V/I)]/d[ln I ] = πκ`I
(T ). (4)

For the range of currents in our experiment,`I lies between 0 and 3 as shown in figure 5,
which does not allow us to investigate the large length scale limit. In particular, the well
known universal Nelson–Kosterlitz [33] jump in the fully renormalized stiffness constant
πκ∞ from 2 to 0 atTBKT is blurred as shown in the inset of figure 2. However, note that
exponenta(T ), as was defined before, cannot show evidence of the spatial renormalization
of the vortex interaction. Assuming that equation (4) still holds as`I equals zero, i.e.
I = Ic, we represent in figure 6 the experimental values ofπκ0 obtained by applying
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equation (4). A significant fact is the weak variation rate ofπκ0(T ) in comparison with
the exponenta(T ) for higher temperatures. It can be clearly seen thatπκ0(T ) undergoes
a variation throughout the temperature range which rejects a linear form. The solid curve
in figure 6 represents a smoothing to the data from which we obtain thatπκ0(T ) almost
vanishes atTco, in good agreement with the usual method to determineTco as was shown
above. Another way to findπκ0 consists in applying the relationπκ0 = A/2kBT in which
we take an expression for the vortex interaction constant asA(T ) = φ0ic(T ) [17] where
φ0 = h/2e is the elementary quantum flux. In this way, the solid curve in figure 6 is
in very good agreement with the expected behaviour ofπκ0 with respect to temperature
when ic(T ) = ico(1 − T/Tco)

2 fulfills the theoretical value as was shown in equation (3).
Here, it should be kept in mind that twoindependentways have been used to reachπκ0.
One method investigates both the weak- and the intermediate-current limits aboveTBKT

with corresponding inequalities for the characteristic distancess < ξ+ 6 ξI < W , and the
other consists in probing the strong current limit in order to makeξI = s about TBKT .
We find a good consistency between these, which shows evidence of a BKT-like behaviour
with a vortex interaction constantA(T ) ∼ (Tco − T )2 as discussed above. On the other
hand, an estimate of the effective vortex dielectric constant atTBKT can be obtained from
εc = πκ0(TBKT )/2. We find the valueεc ≈ 1.1 which shows a weak renormalization of
the vortex interaction in agreement with the expected valueεc = 1.176 for a squareX–Y

model [12]. Under these conditions,a(TBKT ) = 3 gives a close approximation to the BKT
fixed point as was assumed above.

Figure 6. Unrenormalized stiffness constant versus temperature. The short vertical lines with
bars and the solid curve are obtained from two independent ways respectively. One way consists
in applying equation (4) as̀I equals zero, i.e.I = Ic(T ), and the other amounts to using
πκ0 = A/2kBT whereA(T ) = φ0ic(T ) with ic(T ) ∼ (Tco − T )2 verifying equation (3).

A more quantitative evaluation of the consistency of the data with the LAT [16] theory
can be obtained in using the analytic solutions of the Kosterlitz scaling equations [12, 34]
as was first pointed out by KEG [24]. As may be seen by setting`I = ln(Ic/I ) in
V/I ∝ exp(−2`I )y(`I ), a measure of the ratio ofV to I 3 allows us to investigate the pair
excitation probability as long as current effects are dominating. Therefore, it is useful to
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introduce an expression as was shown elsewhere [24]:

y(`I ) = c′[V/Vc(T )]/[I/Ic(T )]3 (5)

in which the scaling voltageVc(T ) = RnIc(T ) andc′ is an adjustable dimensionless constant.
Applying equation (5), we have plotted, in figure 7,y as a function of̀ I = ln(Ic/I ) about
TBKT . The data clearly show thatI–V curves indeed exhibit a curvature depending on the
current. The solid lines display an attempt to fit the analytic solutions of the Kosterlitz
scaling equations [12, 34] to our data. It is useful to keep in the mind that Kosterlitz
equations which requirey(`) � 1 to be valid have analytic solutions only when the
quantity x(`) = 2/πκ` − 1 is much less than unity, i.e.πκ` ≈ 2. Therefore, we have
carried out the fit aboutTBKT as long as the inequality|x(0)| < 0.3 holds. Indeed, figure 7
shows that the theoretical curves and experimental data quantitatively agree. Here, note
that c′ acts as the one and only fitting parameter in equation 5. It is chosen in such a way
that the critical starting conditions are related to one another through the critical trajectory
2πy(0) = −x(0) in agreement with the renormalized Kosterlitz–Thouless phase transition
theory. In this way, we find thatc′ ≈ 1.24 which is a reasonable value of order unity.
Finally, this analysis shows evidence of a BKT-like behaviour with the length scale of the
renormalization determined by the current.

Figure 7. Plots ofy versus ln(Ic/I ). Data are obtained by applying equation (5). From the top
to the bottom,τ ′ = 0.319, τ ′ = 0.191, τ ′ = 0.081, τ ′ = −0.014, τ ′ = −0.098, τ ′ = −0.172,
τ ′ = −0.236, τ ′ = −0.293 andτ ′ = −0.345. The solid lines display an attempt to fit the
analytic solutions of the Kosterlitz scaling equations to the data.

As a final point we now discuss the fluctuation conductivity aboveTco. According to
theoretical predictions, paraconductivity in layered compounds is given by the so-called
Lawrence–Doniach [30] expression:

σLD = g/(d2ε2 + 4ξ2
⊥(0)ε)1/2 (6)

where ε = (T − Tco)/Tco, g = e2/16h̄ = 1.52 × 10−5 �−1 is a universal conductance,
ξ⊥(0) is the perpendicular coherence length atT = 0, and d is the distance between
superconducting layers. Consistently with the features investigated above, we assume
here that paraconductivity is localized in the grains and does not affect the barrier
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resistivity ρb. Hence it follows that the total resistivity of the sample can be written as
ρ = ρb + 1/(σGN + σLD) whereρGN = 1/σGN denotes the normal resistivity of the grains.
In this model fist proposed by Rosenblattet al [31], the experimentally measured quantity is
the differenceδρ, due to the intragranular fluctuation conductivity, between the experimental
resistivityρ(T ) and the normal resistivityρN(T ) = ρGN(T )+ρb(T ). An expression is easily
deduced forδρ asρN −ρ = σLDρ2

GN/(1+σLDρGN) from which we obtainσLD(T ), if once
both ρN(T ) andρb(T ) are known. For this purpose, we estimateρN(T ) by extrapolating
the linear best fit to the experimentalρ(T ) at T > 250 K, as shown in the inset of figure 1,
and approximateρb to ρ(Tco) which presupposes thatρb(T ) is slowly varying with the
temperature. Figure 8 showsg2σ−2

LDε−1 as a function ofε. The solid straight line displays
an attempt to fit the theoretical equation (6) to the data. Note that we introduce here only
two fitting parameters. One is the intersection of the straight line with the axis of the
ordinates that gives the quantity 4ξ2

⊥(0), and the other is the slope of the line from which
we obtaind2. The inset of figure 8 is an enlargement of the figure in the weak reduced-
temperature region. It really does show excellent agreement between the theoretical line
and data with realistic values for fitting parameters, as expected in the Tl-2212 compound.
We find d ≈ 17.7 Å which is a value close to the halfc-axis parameter, andξ⊥(0) ≈ 0.
In another redundant way, the solid line in figure 1 fits theoretical predictions, as proposed
above, for the experimental dR/dT . It may then be verified that wequantitativelyexplain,
over a very wide temperature range, the ‘rounding’ of the resistive transition in terms of
fluctuation conductivity, as predicted in high-Tc cuprates.

Figure 8. Plot of g2σ−2
LDε−1 versusε = (T − Tco)/Tco. The straight line corresponding to the

best fit to the data allows the determination ofd andξ⊥(0).

5. Conclusion

In summary, the present paper reports electrical transport properties near the superconducting
critical temperature in a Tl-2212 granular thin film in a zero magnetic field. We find
experimental support for a BKT-type phase transition. Using an unusual way to determine
the vortex–antivortex interaction constant, we find thatA(T ) ∼ (Tco − T )2. This behaviour
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cannot account for 2D vortex pair excitations within the superconducting CuO2 layers.
Here we succeed in explaining experimental data which support the view that some Tl-
2212 thin films can be described as 2D arrays of weakly coupled superconducting grains.
By doing this, we show that data support the LAT [16] model. In particular, a quantitative
agreement with the approximate BKT fixed point given byic(TBKT )/TBKT ≈ 30 nA K−1

is obtained in our experiment. Under these conditions,A(T ) ∼ (Tco −T )2 provides support
for a strongly depressed superconducting order parameter at the boundaries, as predicted
elsewhere [19, 20]. Using a method first proposed by KEG [24], we investigate in some
detail the spatial renormalization of the vortex interaction over length scales imposed by the
current. In this way, good agreement with the renormalized BKT theory is found. Finally,
the ‘rounding’ of the resistive transition atT > Tco is quantitatively explained by Gaussian
fluctuations of the order parameter amplitude, if once the role of the granularity is taken
into account.
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